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a b s t r a c t

Current research into workplace risk is mainly conducted using conventional descriptive statistics,

which, however, fail to properly identify cause-effect relationships and are unable to construct models

that could predict accidents. The authors of the present study modelled incidents and accidents in two

companies in the mining and construction sectors in order to identify the most important causes of

accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks,

support vector machines and classification trees) were used to model accident and incident data

compiled from the mining and construction sectors and obtained in interviews conducted soon after an

incident/accident occurred. The results were compared with those for a classical statistical techniques

(logistic regression), revealing the superiority of decision rules, classification trees and Bayesian

networks in predicting and identifying the factors underlying accidents/incidents.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A total of 922,253 workplace accidents resulting in lost work-
days occurred in Spain in 2008; 194,248 occurred in the con-
struction sector and 3255 occurred in the mineral extraction
sector, representing falls of 23.3% and 14%, respectively, over
2007 [1]. The fall in 2008 compared to 2007 in terms of incidence
(i.e., number of workplace accidents/population with social
security accident insurance�100,000) was 10.3%. This fall may
be explained by the greater efforts of companies to ensure the
safety of their workers by implementing preventive measures,
whether on their own initiative or in response to legal obligations.
Indeed, the fall may respond to Law 32/2006 governing con-
struction sector subcontracting [2] and Royal Decree 1109/2007
deploying this law [3]. Subcontracting is a normal practice in
Spain for construction and earth movement activities (in both the
civil engineering and mining sectors), as it generally results in
greater business efficiency. The new legislation was approved to
ensure compliance with worker health and safety standards
throughout the subcontracting chain. Royal Decree 1109/2007,
passed in mid-2007 (and therefore in force when collecting data
for this research) requires guarantees that ensure that any loss of
control in the subcontracting regime does not result in health and

safety risks for workers. The new legislation may be partly
responsible for the fall in industrial accidents in the second half
of 2007 and early 2008. The most recent statistics available,
referring to the period April 2009–March 2010, reveal the same
falling trend, both in the total number of accidents and in
incidence: 4130.7 in 2009, a 18.5% lower than 2008.

Despite this fall, the issue of workplace safety continues to be a
priority in social and economic policies and so requires in-depth
studies that enable the causes of accidents to be accurately
identified so that more effective measures and standards can be
implemented.

Several statistical methods have been used in the workplace
accident prevention field to process data. Analyses are usually
descriptive, resulting in data in the form of historical summaries,
percentages and indexes [4,5], or are based on linear models that
evaluate the association between accidents and potential causes
identified a priori ([6] and references therein). A priori, however,
linear models excessively restrict how complex relationships
between accidents and possible causes are modelled and may,
in fact, fail to detect factors with a bearing on accidents if the
relationship is non-linear.

The possibility for explaining and interpreting workplace
accidents in terms of the entire range of possible causes is thus
limited; this, in turn, conditions any working hypothesis aimed at
predicting and reducing accidents. More sophisticated tools are
thus needed that would enable full use to be made of information
on accidents in terms of assessing dependence relationships
between all the variables under consideration.
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Data mining, which is an important discipline in fields such as
medicine, engineering and finance, offers very positive results
(see [7–9]). As for workplace risk management, studies have been
conducted to assess the usefulness of such techniques in terms
of their predictive power [10] and explanatory capacity [11].
Decision rules, for example, have been found to be particularly
useful in identifying working conditions in the construction field
that are associated with greater accident risk [12,13]. These
studies, based on data from accident reports and interviews with
workers and employers, confirm the advantages of data mining
over conventional statistics in terms of the predictive function
and the possibility of identifying interactions between variables
with a bearing on accidents.

Our research aims to identify, from among a preselected group
of methodologies, the data-mining techniques that extract the
most useful information on workplace accidents from a database
created from a survey of incidents/accidents in mining and civil
construction companies, two sectors which, in Spain, head the list
in terms of accidents involving lost workdays (data for 2008 from
the Ministry of Labour and Immigration).

Our work is in a pilot phase aimed at evaluating the techni-
ques available and contributing to the gradual development
of a structured methodology for analysing workplace accidents
that can eventually be safely applied to the design and planning
of large-scale and far more costly studies. The potential of
data-mining techniques not only derives from the possibility
for processing large quantities of data but also from the
following:

(1) their capacity to deal with large-dimension problems, which
is necessary when endeavouring to identify relevant variables
among a large number of potential factors;

(2) their flexibility in reproducing the data-generation structure,
irrespective of complexity, thanks to a non-linear structure
that is adaptable to the data (non-parametric philosophy);

(3) their great predictive and, in some cases, interpretative,
potential.

In our research we evaluated Bayesian networks, decision
rules, classification trees, logistic regression and support vector
machines, with a view to ultimately reducing workplace accident
rates by enabling preventive measures to be concentrated in an
effective way in areas of greatest risk.

2. Materials and methods

2.1. Information sources and data description

The information used in this study was obtained from a survey
carried out among workers employed in two companies—one in
the mining sector and the other in the civil engineering
sector—belonging to the same group and with operations in the
Aragón, Asturias and Valencia regions of Spain.

In the mining company, workers from four operations were
interviewed: an opencast coalmine employing 48 workers,
two opencast ceramic-quality clay pits employing 72 workers
and a quarry employing 13 workers and producing quartzite for
use as a filler for public works and aggregates. The public works
company surveyed, which removes earth in road, motorway
and railroad (including high-speed train railroad) construction
works, normally employs about 50 workers when working at full
capacity.

Delivered and circulated in these companies, between Sep-
tember 2007 and March 2008, was a questionnaire with 20
questions to be completed whenever an accident/incident

occurred. The questions covered issues related to the circum-
stances of the accident/incident, the worker, the kind of activity,
work conditions and compliance with regulations. An incident
was defined as any unexpected deviation from work procedures
that might have caused an accident, and an accident was defined
as a deviation from working standards or procedures affecting the
health or safety of a worker [14].

A total of 62 completed questionnaires, each corresponding to
a single accident/incident at different work stations and in
different operations, were returned; of these, 18 referred to
accidents and 44 to incidents. The severity of the accidents was
not recorded. Each of the fields in the survey represented a study
variable and, in total, information was obtained on 17 variables
that were categorized in three groups referring to the event, the
worker and the company (in terms of overall job and risk
management). The variables for each category were as follows
(see Table 1):

2.1.1. Event (three variables)

� Time of day (HRD): first thing (FH), after lunch (AL), last 2 h of
work (LH), overtime hours (OT), or other (OTH).
� Day of the week (DAY): Monday (M), Tuesday (TU), Wednes-

day (W), Thursday (TH), Friday (F), or Saturday (S).
� Month (MTH): September (S), October (O), November (N),

December (D), January (J), February (F), or March (M).

2.1.2. Worker (nine variables)

� Worker age (AGE): Below 27 (s1_below_27), 27–32.5 years
(s2_27_32c5), 32.5–40.5 years (s3_32c5_40c5), or over 40.5
years (s4_40c5_up).
� Worker nationality (NAT): Native-born Spanish (SP), Eastern

European (Armenia, Bulgaria, Poland and Romania) (EE), Afri-
can (Libya and Morocco) (AF), or Latin American (Chile,
Colombia and Ecuador) (LA).
� Job type (JOB): Job that involved handling vehicles (VH), job

that involved handling heavy machinery (MC), office job
involving no use of machines (OF), other job (electricians,
mechanics, etc.) (OTH), or unspecified job (NS).
� Length of time in the company (TCO): Less than 6 months

(s1_below_0c5), 6–12 months (s2_0c5_1), 1–1.5 years
(s3_1_1c5), 1.5–2 years (s4_1c5_2), or more than 2 years
(s5_2_up).
� Length of time doing the specific job associated with the accident

(TJB): Less than 1 week (s1_below_1W), 1–4 weeks
(s2_1W_1M), or more than 4 weeks (s3_1M_up).
� Accident risk training (ATR) received: General training and

training specific to the post (applied and practical on-the-job
training, in accordance with Law 31/1995 [15]) (GS), general
theoretical training (GT), or no training (NT).
� Type of employment contract (ECT): Temporary employment for

a specific purpose (SP), temporary employment (TE), or per-
manent employment (PE).
� Job-associated risk awareness (RAW): The worker perceived the

risk (YES), or the worker did not perceive the risk (NO).
� Personal factors (PFA): Personal factors contributed to the

accident (YES), or personal factors did not contribute to the
accident (NO).

Note that these last two variables are subjective, reflecting, in
turn, whether the worker was aware of any risk prior to
the accident/incident, and the undeniable influence on acci-
dents/incidents of factors such as worker diligence, stress,
boredom, etc.

T. Rivas et al. / Reliability Engineering and System Safety 96 (2011) 739–747740
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2.1.3. Company (five variables)

� Task duration in hours (TKH): less than 4 h (s1_below_4),
4–8 h (s2_4_8), or longer than 8 h (s3_8_up). Note that this
variable has a direct bearing on the use of protective measures.
� Company contractual status (CCS): The employing company was

subcontracted (SB), or the employing company was the main
contractor (MN).
� Risk management and supervision at the accident site (MAS):

There was supervision and/or control (SC), there was a risk
management policy but no supervision and/or control (RP), or
there was no risk management policy and so no supervision

and/or control (NP). Note that this variable reflects whether a
company had health and safety personnel.
� Risk assessment in accordance with Royal Decree 39/1997 [16]

(RKA): Risk had been assessed (YES), or risk had not been
assessed (NO).
� Job-related protective measures (JBP): Individual and collective

protective equipment was provided (YES), or individual and
collective protective equipment was not provided (NO).

Included also was a response variable called event (EVT),
which could take an accident (A) or incident (I) value.

Table 1
Variables selected for study.

Variable Values

(a) Event-related variables (n¼3)
Time of day (HRD) First Thing (FH), After Lunch (AL), Last 2 hours of work (LH), Overtime hours

(OH), Other (OTH)

Day of the week (DAY) Monday (M), Tuesday (TU), Wednesday (W), Thursday (TH), Friday (F),

Saturday (S)

Month (MTH) September (S), October (O), November (N), December (D), January (J),

February (F), March (M)

(b) Worker-related variables (n¼9)
Worker age (AGE) Below 27 (s1_below_27)

27–32.5 (s2_27_32c5)

32.5–40.5 years (s3_32c5_40c5)

Over 40.5 years (s4_40c5_up)

Worker nationality (NAT) Native-born Spanish (SP)

Eastern European (Armenia, Bulgaria, Poland and Romania) (EE)

African (Libya and Morocco) (AF)

Latin America (Chile, Colombia and Ecuador) (LA)

Job type (JOB) Job that involve handling vehicles (VH)

Job that involve handling heavy machinery (MC)

Office job involving no use of machines (OF)

Other job (electricians, mechanics, etc) (OTH)

Unspecified job (NS)

Length of time in the company (TCO) Less than 6 months (s1_below_0c5)

6–12 months (s2_0c5_1)

1–1.5 years (s3_1_1c5)

1.5–2 years (s4_1c5_2)

More than 2 years (s5_2_up)

Length of time doing the job associated with the accident (TJB) Less than 1 week (s1_below_1W)

1—4 weeks (s2_1W_1M)

More than 4 weeks (s3_1M_up)

Accident risk training (ATR) General training and job-specific training (GS)

General theoretical training (GT)

No training (NT)

Type of employment contract (ECT) Temporary employment for a specific purpose (SP)

Temporary employment (TE)

Permanent employment (PE)

Job-associated risk awareness (RAW) The worker perceived the risk (YES)

The worker did not perceive the risk (NO)

Personal factors (PFA) Personal factors contributed to the accident (YES)

Personal factors did not contribute to the accident (NO)

(c) Company-related variables (n¼5)
Task duration in hours (TKH) Less than 4 h (s1_below_4)

4–8 h (s2_4_8),

Longer than 8 h (s3_8_up)

Company contractual status (CCS) The employing company was subcontracted (SB)

The employing company was the main contractor (MN)

Risk management and supervision at the accident site (MAS) There was supervision and/or control (SC)

There was a risk management policy but no supervision and/or control (RP)

There was no risk management policy and so no supervision and/or control

(NP)

Risk assessment in accordance with Royal Decree 39/1997 [11] (RKA) Risk had been assessed (YES)

Risk had not been assessed (NO)

Job-related protective measures (JBP) Individual and collective protective equipment was provided (YES)

Individual and collective protective equipment was not provided (NO)

(d) Prediction variable
Event (EVT) Accident (A), Incident (I)
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2.2. Methodology

The different data-mining techniques used the tools described
below. In order to select the variables, determine their relevance
and estimate (most of) the data-mining models, we used the
Waikato Environment for Knowledge Analysis (WEKA) freeware
developed by the University of Waikato [7]. We also used the
Genie (Graphical Network Interface) software developed by
the University of Pittsburgh to construct and train the Bayesian
networks.

Our research was structured in two phases as follows: an initial
phase in which the different methods were applied in order to select
the most relevant variables, and a second phase that consisted of
applying—using the most relevant variables—different data-mining
techniques so as to determine their capacity for predicting
an accident/incident and to assess their capacity for explaining
the event.

2.2.1. Variable selection

A first phase was aimed at identifying the most relevant of the
17 variables in terms of explaining the response variable. The
WEKA software offers a number of variable selection methods for
studying the relevance of database variables in relation to a
response.

A total of three tests using cross-validation were performed
with 10, 5 and 3 groups. The WEKA attributes selection function
(select attributes) grouped 31 different methods in two distinct
categories based on either of the following:

� The frequency with which each variable was selected in each
cross-validation training round. For this group we used:
J CfsSubSetEval, which selects variables according to the

level of correlation with the response variable.
J WrapperSubSetEval, which selects variables on the basis of

the improvement in predictive capacity brought about by
the incorporation of each variable in 19 different data-
mining models.

� An indicator of the merit of each variable that produced a
ranking of variables in terms of relevance. A total of six such
selection models were used.

The evaluation options, classifiers and search methods used in
some of the models are listed in Table 2.

2.2.2. Model application and predictive and explanatory capacity

analysis

Once the variables were ordered according to weight-rele-
vance for the event prediction variable, 17 different data-mining

models were applied, resulting in a percentage of correctly
classified cases and a confusion matrix for each.

With a view to testing whether the number of variables had a
bearing on model predictive and explanatory capacities, the
models were tested in three different ways: by including the
seven most relevant causal variables obtained in the first phase of
the study along with the prediction variable; by introducing the
first 10 causal variables along with the prediction variable; and
finally, by introducing all the variables.

The data-mining techniques used to model the influence of the
explanatory variables on the response variable (event) were
decision rules, classification trees, Bayesian networks, support
vector machines and logistic regression (see, in addition to the
specific references provided below [7–9]).

� Logistic regression: Logistic regression [17] is a generalised
linear regression technique which, rather than directly model-
ling the response variable in terms of the covariables, models
the logarithm of the odds ratio, which represents the prob-
ability of occurrence of the class of interest (accident) versus
the probability of the occurrence of another class (incident).
Logistic regression is estimated using the maximum likelihood
method.
� Decision rules: Decision rules produce rules of the form ‘‘if A

then B’’ (A¼4B), where the antecedent is a combination of
values for the explanatory variables and the consequent is a
value for the response variable (in our case, an event in the
form of a workplace accident/incident). The goodness of rules
obtained from the data were evaluated as follows:
J Coverage or support: The proportion of data instances

in which the rule is satisfied. Thus, the coverage of
A¼4B is the proportion of data instances that verify both
A and B. It can be written as coverage (A¼4B)¼P(A\B),
where the probability is understood to refer to the data
sample.

J Confidence or precision: The percentage of correct predic-
tions of a rule when it can be applied. Thus, the confidence
that A¼4B is the proportion of data instances that satisfy
both A and B in the set of instances that satisfy A. This
number coincides with coverage divided by the number of
instances that satisfy A. It can be written as confidence

(A¼4B)¼P (B9A)¼P (A\B)/P (A).

For our research we used the following WEKA algorithms:
J OneR algorithm [18]: This algorithm, equivalent to a single-

level classification tree, tests all the possible attribute-value
pairs and selects that producing the least error.

J PART algorithm [19]: Based on partial C4.5 decision
trees [22], this algorithm combines splitting and covering
operations.

� Classification trees: Classification trees [20] are statistical
classification techniques that can be graphically represented
as diagrams. There are different kinds of trees, but they are all
generally trained by progressively dividing the data into
groups—on the basis of some condition in regard to one of
the explanatory variables—in such a way that each group is as
similar as possible in terms of the response variable. Each
group obtained in the previous stage is divided again, with a
view to enhancing similarity, using a new condition based on
an explanatory variable, and so on successively until some
stop criterion is satisfied. The classification trees used in our
research were WEKA-implemented algorithms as follows:
J ID3 algorithm [21]: This antecedent of the C4.5 algorithm,

based on the divide-and-conquer method, can be applied
with discrete variables and binary-type objective variables.
There is no pruning and division is by entropy.

Table 2
WEKA variable selection methods, classifier types and search methods.

Evaluation method Classifier/options Search method

Attribute selection methods
WrapperSubSetEval BayesNet, algorithm K2—P 1 Greedy

BayesNet, algorithm K2—P 3 BestFirst

BayesNet, algorithm HC—P 1 BestFirst

Naive Bayes, predetermined values Genetic

Logistic, predetermined values BestFirst

Tree J48, predetermined values BestFirst

CfsSubSetEval Predetermined values Exhaustive

Predetermined values Rank

Relevance ranking methods
ChiSquareAttributeEval Predetermined values Ranker

OneRAttributeEval Predetermined values Ranker

GainRatioAtrributeEval Predetermined values Ranker

T. Rivas et al. / Reliability Engineering and System Safety 96 (2011) 739–747742
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J J48 algorithm [22]: This advanced version of the C4.5
algorithm implemented in WEKA works with discrete and
continuous variables and generates n-ary trees. It uses the
gain criterion for division and applies a pruning process.

J LMT algorithm [23]: This hybrid induction tree and linear
logistic regression algorithm produces binary or n-ary trees
and logistic regression models in the leaves. Post-pruning is
based on estimating error complexity.

� Bayesian networks: Bayesian networks [24] are directed acyclic
graphs used for descriptive and predictive purposes. Their
node-and-arc network structure provides information on
independence/dependence relationships (depicted by arcs)
and variables (depicted by nodes). For our research we used
K2, hill-climber and TAN implemented in WEKA as the net-
work training algorithms, with different constraints on the
number of parents. We also used a particular case of the
Bayesian networks, called naive Bayes, with a structure of just
two levels and a single parent (the response variable) pointing
to all the covariables. The networks were trained by means of a
greedy search of the space of possible structures, with the best
network chosen on the basis of a specific goodness-of-fit
criterion for the selected algorithm.
J K2 algorithm [25]: This algorithm, which uses a greedy

search mechanism, starts from the simplest possible net-
work, which, in each successive iteration, is modified by the
addition of new parents producing greater benefits accord-
ing to a pre-established criterion.

J Hill-climber algorithm: This algorithm, which is a discrete
version of the gradient descent (ascent) algorithm (see, for
example, [26]), implements a local search in each iteration.
The algorithm starts with an initial network and deter-
mines a nearest-neighbour graph that improves the net-
work by including, eliminating or inverting an arc in the
graph. The process is repeated until there is no neighbour
that improves the current solution.

J TAN algorithm [27]: This algorithm first constructs the
attributes tree structure and then adds the class variable
following the naive structure.

� Support vector machines: Support vector machines (SVM) [28]
implement a linear classification rule that maximises the distance
between classes (the solution margin). They do this in a larger
dimension space that is the outcome of suitably transforming the
input space variables, resulting in a non-linear frontier between
the classes in the original space. SVMs are trained by resolving a
quadratic programme with linear constraints that has a single
solution. The algorithm used in our research was the SMO
algorithm, which efficiently solves the quadratic programme for
the SVMs [28] by dividing the quadratic optimisation problem
into a series of small problems that can be resolved analytically.

3. Results

3.1. Variable selection

The different variable evaluation methods produced fairly
similar results. With a view to constructing a single ranking of
variables by order of importance, the cross-validation results for
the frequency-based selection methods were translated into a
ranking based on the most frequently used variables. Finally, the
means were calculated for the rankings obtained by each of the
methods, resulting in the ranking shown in Table 3.

The variables with higher rankings (i.e., greater weight) were
associated with the kind of work done by the worker and with
aspects associated with the type of employment. The eight variables
with the highest weights included worker age and risk training.

It is noteworthy that variables that were associated with
managing risk overall and that did not depend directly on the
worker—namely risk assessment and risk management and
supervision—were ranked 8 and 9.

Also of interest is the fact that job-related protective measures
(whether individual or collective), which also correspond to the
set of variables that define risk management, were ranked last.

3.2. Model predictive capacities

The predictive capacity of the models, as mentioned earlier, was
evaluated using three tests: by selecting the 7 and 10 best covari-
ables in the ranking given in Table 2 and by using all the covariables.

Predictive capacity was assessed on the basis of classification
success (or error) in 10-fold cross-validation. The approach used
was to exclude six observations from training and evaluate model
training success (or error) for 56 observations. The procedure was
performed for 10 randomly selected groups and the mean success
rate was calculated. This approach enabled model predictive
capacity to be assessed for new cases.

Table 4 shows the best results obtained for the models,
indicating the number of covariables used, the mean cross-
validation success rate and the confusion matrix. For models

Table 3
Ranking based on the means calculated for the results obtained by the different

relevance evaluation methods for the response variable. Ranking was based on the

ranking obtained by each method, whereas selection considered the number of

times each variable was selected in each cross-validation iteration.

Ranking Variable

1 TKH—Task duration in hours

2 CCS—Company contractual status

3 TJB—Length of time doing the job

4 JOB—Job type

5 AGE—Worker age

6 HRD—Time of day

7 ART—Accident risk training

8 RKA—Risk assessment

9 MAS—Risk management and supervision

10 PFA—Personal factors

11 DAY—Day of the week

12 TCO—Length of time in the company

13 RAW—Job-associated risk awareness

14 ECT—Type of employment contract

15 MTH—Month

16 NAT—Worker nationality

17 JBP—Job-related protective measures

Table 4
Success rates and confusion matrices for the models for the variables producing

the best results.

Model Variables (n) Success (%) Confusion Matrix

BayesNet—K2—1 parent 7 & 10 85.48 [108,143]

BayesNet—K2—3 parents 7 88.71 [126,143]

BayesNet—K2—8 parents 7 88.71 [126,143]

BayesNet—HC—1 parent 7 85.48 [108,143]

BayesNet—HC—3 parents 7 79.03 [810,341]

BayesNet—TAN 10 83.87 [117,341]

Naive Bayes 7 & 10 83.87 [99,143]

Simple Naive Bayes 7 & 10 83.87 [99,143]

SVM—SMO 7 87.10 [117,143]

Logistic regression 7 & 17 72.58 [810,737]

Tree—ID3 7 77.42 [125,436]

Tree—J48 7, 10 & 17 87.10 [117,143]

Tree—LMT 7 82.26 [108,341]

Rule—PART 7 85.48 [117,242]

Rule—OneR 7, 10 & 17 75.81 [414,143]
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producing similar success rates for different numbers of variables,
confusion matrices are shown only for the lowest number of
variables (seven variables).

The confusion matrices, shown on a single line for reasons of
space, are composed of two rows with the comma indicating the
end/beginning of a row. For a matrix [a b, c d], a is the number of
correctly classified accidents, b is the numbers of accidents wrongly
classified as incidents, c is the numbers of incidents wrongly
classified as accidents and d is the number of correctly classified
incidents.

In general, the different techniques functioned best with seven
variables, although this does not mean that all the techniques
used the same variables in the resulting models.

This would imply that training with many variables may
ultimately be unproductive, confirming the importance of a
variable pre-selection process. This can be observed particularly
with the non-naive Bayesian networks, with the exceptions being
the classification trees and the naive Bayesian networks. Classi-
fication trees have their own training algorithm and so success-
fully implement their own selection methods; the naive Bayesian
networks do not select variables but directly estimate probabil-
ities for all the covariables in accordance with the different values
of the response variable.

As for success rates, the best (and very similar) results were
obtained by the Bayesian networks with the K2 algorithm (88.71%),
the J48 classification tree, the SVM (both 87.10%) and the PART rules
(85.48%). PART produced the same structure as the J48 tree, in fact,
with the small difference between success percentages resulting
from cross-validation randomness.

The poorest performing predictive models were logistic regres-
sion (72.58%)—because of the excessive simplicity of its linear
model—and the OneR algorithm for rule extraction (75.81%)—which
produced rules that were based excessively on the particularities of
the sample and so tended to overfit.

As for the confusion matrices, it can be observed that, with
seven variables, most errors in the models occurred in classifying
the accidents. This can be explained by the fact that accidents are
less well-represented in the sample than incidents, making it
more difficult for the models to characterize the former. When all

the variables were used, the model classification errors were
more evenly distributed between accidents and incidents,
although the success rates fell, indicating that using all the
variables led to overfitting.

3.3. Model interpretation

Of all the models evaluated, those with the best explanatory
capacity (whether because they establish rules or decision lists or
graphically model the relationship between variables) were the
decision rules, the classification trees and the Bayesian networks.
Below we analyse the results obtained by these models from the
perspective of interpreting accident occurrence in terms of the
number of variables used in the models.

The simplest result explains accident occurrence in terms of
two variables: task duration in hours and company contractual
status (ranked 1 and 2, respectively, in Table 2). This result was
obtained for seven covariables by the three best models: the PART
rule, the Bayesian networks and the classification trees.

As an illustrative example, Fig. 1 shows the structure of the J48
tree, analogous to that produced by the PART rule and interpreted
as follows:

� If a task lasts less than 4 h, the outcome is an accident, with a
confidence level of 85.71% and coverage of six cases.
� If a task lasts 4–8 h, the outcome is an incident, with a

confidence level of 100% and coverage of six cases.
� If a task lasts more than 8 h, the outcome depends on the

company’s contractual status: an accident if the company is
subcontracted (confidence, 100%; coverage, 5) or an incident if
the company is the main contractor (confidence, 84.09%;
coverage, 37).

The Bayesian networks offered a much more interesting
perspective on interpreting accidents than the other models. They
agreed with the other models in granting greatest weighting
in terms of accident risk to task duration in hours (when less
than 4 h) and company contractual status (when subcontracted).

Fig. 1. J48 tree structure. The numbers in brackets indicate the number of observations in each class (accident/incident) and the letter indicates the majority class (A for

accident and I for incident). Thus, for example, the first node on the extreme left indicates that if task duration in hours is less than 4, then more accidents (7) are likely

compared to incidents (1).
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However, as graphic models that are automatically updated when
new evidence is included (i.e., they permit an immediate what-if
query), the Bayesian networks have an advantage over the other
models in terms of the overall interpretation of workplace
accidents.

The simplest Bayesian model—and also the one with one of
the best prediction success rates—was the greedy K2 Bayesian
network based on the first seven causal variables, depicted in
Fig. 2(a). In the structure learning phase a restriction of three
parents was established as the maximum for each node. None-
theless, from the data, the algorithm estimated the network
shown in the figure, with just a maximum of two parents per
node, indicating that the data do not require greater complexity.
This figure highlights one of the distinguishing features of this
technique: its capacity for identifying possible relationships not
only between the covariables and the response but also between
the covariables themselves. The network obtained revealed direct
relationships between time on the job and the type of job,
task duration and company contractual status and the worker’s
training.

Table 5 depicts the conditional probabilities for the node
referring to task duration in hours, showing the conditional prob-
abilities for each state (accident or incident) estimated from the data
using the maximum likelihood method. It can be observed that

when an accident occurred, the probabilities that a task lasted more
than 8 h or less than 4 h were 0.6410 and 0.3333, respectively; since
both are higher than the probability for a task lasting between 4 and
8 h, the conclusion is that an accident is less likely in this
intermediate task duration interval.

However, this analysis can be more easily performed by
exploiting the other great feature of this technique: the possibility
of performing what-if analyses based on the structure inferred
from the data. In Fig. 2(b), which shows the results of this analysis
regarding the occurrence of accidents, it can be observed that the
probability of an accident rose significantly—compare the condi-
tional probabilities in Fig. 2(b) with the unconditional probabil-
ities in Fig. 2(a)—for workers aged over 40 years, workers on the
job for less than a week, subcontracted workers and workers
performing tasks lasting less than 4 h. These accidents, moreover,
were associated with jobs categorized as other or unspecified, and
also featured a higher proportion of workers with insufficient risk
training. In terms of the time frame, the accidents were associ-
ated with the first hours of the day, the hours after lunch and
overtime hours.

Like the other models, the networks gave greatest weight to
task duration in hours and company contractual status, and it can
be observed that this association arose among workers employed
by subcontractors. According to the network, this group of work-
ers is composed of employees aged over 40 years who perform
activities for 4 h or less, on the job for less than a week and
carrying out unspecified jobs. In comparison, workers employed
by a main contractor tend to have a slightly higher level of job-
specific accident-risk training.

In regard to the same network built with more variables, a
number of other interesting observations can be made:

� Certain variables had little or no influence on the accident/
incident distribution of the variables, for example, risk assess-
ment, age, type of employment contract and length of time in
the company.
� The risk management and supervision variable was associated

with the risk assessment and event variables; thus, when risk
management and supervision was appropriate, risk was eval-
uated better, meaning that incidents were more likely than
accidents (80% of cases). In contrast, if risk management and
supervision was defective, the accident rate increased (51% of
cases).
� A close link could be observed between job-related protection

and risk assessment. Thus, if risk was assessed, then protection
was appropriate in 83% of the cases; otherwise, this rate fell to
67%. Likewise, good job-related protection was associated with
a greater proportion of tasks lasting longer than 8 h, workers
who had been on the job for more than 1 month and specified
jobs (vehicle operators, heavy machinery operators and office
workers)—all associated with a higher incident rate. In con-
trast, poor job-related protection was associated with brief
tasks and unspecified jobs—all associated with a higher
accident rate according to all the models.

Fig. 2. Greedy K2 Bayesian network built with seven variables and a maximum of

three parents. The bars indicate the estimated probabilities for each variable:

(a) structure inferred from the data and (b) what-if analysis regarding the

possibility of an accident (p(A)¼100%).

Table 5
Conditional probabilities for the task duration node. Shown are the probabilities

for each state (accident or incident) estimated from the data.

Task duration (h) Accident Incident

dr4 0.3333 0.0330

4odr8 0.0256 0.1429

d48 0.6410 0.8249

1.0000 1.0000
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4. Discussion

The results of this research represent an important advance in
terms of managing information on workplace accidents, obtained
in this case, from surveys conducted soon after the occurrence of
incidents/accidents in the construction and mining sectors.

First of all, we established a statistical analysis protocol, based
on data-mining techniques, that enables the following: (1) selec-
tion of the most relevant information from all the data available,
which ultimately enhances model prediction success rates
and explanatory capacities; and (2) identification of the most
useful data-mining tools in terms of predictive and explanatory
capacities.

Secondly, the conclusions extracted from the models capable
of explaining the causes of workplace incidents/accidents in the
surveyed companies revealed the circumstances with a bearing
on accidents, thereby enabling causes to be clearly defined.
Nonetheless, such conclusions were not the main aim of the
research, which was conceived from the outset as a pilot project
aimed at profiling a methodology for analysing workplace acci-
dents that can be safely applied to a subsequent large-scale
project. These conclusions, therefore, are only valid for the
specific companies and period studied and should not be extra-
polated further.

In the variable pre-selection phase, all the models applied in
our research coincided in pointing to the same few variables (of a
longer list of possible variables) with most weight in terms of
predicting an accident/incident. This approach screens out non-
relevant information and so ensures better training and predic-
tion by the models. Furthermore, it also means that further
questionnaires can be prepared for the same employees that will
be easier to complete and therefore more effective, whether in
terms of recording information or including other exploratory
factors that better delimit the causes of accidents/incidents.

In terms of the information provided about the accidents/
incidents that occurred in the surveyed companies, the most
useful of the models studied were the rule-based (classification
trees and decision rules) and Bayesian models, as they were the
most successful in terms of prediction. This conclusion generally
coincides with that obtained in previous research [10], which
demonstrated that these techniques offered the best predictive
capacities in regard to workplace falls studied using a database
created from accident reports. It can only be concluded that the
structure of these techniques is very adaptable to the data
generally available in this area of study.

Decision rules and classification trees provided identical infor-
mation on workplace accidents when relatively few variables (the
most relevant ones) are included in the models. They are usefully
applied when the aim is to identify the circumstances typically
associated with a greater probability of an event; an example
from this particular research is the association between accidents
and both task duration and company contractual status. The
Bayesian networks—which offer the same quality of information
as the rules and trees in regard to the most relevant variables
with a bearing on accidents/incidents—have an additional advan-
tage, which is that their what-if analytical capacity allows data to
be explored in greater depth, enabling different scenarios for
workplace accidents/incidents to be depicted.

From the risk management perspective, our results point to
the typical scenario in which workplace accidents occurred in the
companies that were surveyed for our research: tasks of a short
duration, jobs that had not been specified, workers employed by
subcontractors and workers who had not been long on the job.
Once an associated scenario like the one described has been
characterized, graphic models like the Bayesian networks enable
an investigation into the possible causes of an accident; thus, for

example, referring to the particular scenario described above, we
were able to rule out an association between a higher rate of
accidents and poorer risk training, as the Bayesian networks
indicated that risk training was similar and sometimes even
better for workers employed by subcontractors.

Another interesting fact is that, in the variable pre-selection
phase for our sample, the variables associated with company risk
management were ranked in the intermediate (two variables) and
lowest (one variable) positions. The Bayesian networks thus
revealed no direct association, for our sample, between accidents
and variables such as risk assessment, job-related protective
measures and risk management and supervision. Note that we
were not researching accidents as such; we were analysing
possible causes that might affect the level of accidents in a
specific group of workers. Leaving aside the particular circum-
stances of subcontractors in our sample, what remains clear is the
need to investigate the circumstances associated with risk man-
agement and supervision that would enable a better causality
model for a company or sector to be built.

These results were obtained from a database of 62 cases. This
database size, which was determined by the kind of unforeseeable
factors that inevitably affect a pilot project, may be considered
insufficient to enable conclusions to be drawn. Nonetheless, the
ideal sample size cannot be pre-established, as it depends on the
variability in the data (variance) and in the structure of relation-
ships between variables. If variability was zero, a single record for
each type of event (incident or accident) would be sufficient to
infer cause. In contrast, if there were no causal relationship
between the variables and the relationship between variables
were unpredictable, even an unlimited quantity of data would be
useless.

For this reason, in large-scale projects, this variability should
be estimated through pilot sampling, as done in our research,
which was conceived as a preliminary project aimed at designing
a methodology that can be applied to different scenarios in order
to estimate the minimum sample size (among other organiza-
tional, statistical and computational aims) that would depict the
underlying causal structure.

Table 2 shows that the most successful techniques had success
rates above 85%. It should be borne in mind that these rates were
obtained by means of cross-validation; therefore, their predictive
capacity was evaluated for data not processed by the different
models. These results speak for themselves regarding the cover-
age provided by the size of the sample in this pilot project. If the
sample size had been insufficient, predictions regarding new data
(that is, data not used in building the models) would only be
slightly better than random predictions. It is difficult to conceive
that success rates of over 90% could be achieved for problems of
this nature, with so many circumstantial variables conditioning
accident type.

On the other hand, the lower percentages for a linear model
like logistic regression suggest non-linear relationships between
the variables, justifying the use of machine learning techniques
for this kind of problem, due to their capacity for reproducing
non-linear structures that are not known a priori (the non-
parametric philosophy).

5. Conclusions

The results of this research have enabled us, using different data-
mining techniques, to define an efficient protocol for handling and
analysing workplace accident data that (1) identifies the most
immediately relevant variables and consequently improves predic-
tion success rates and explanatory capacities, and (2) permits
conclusions to be drawn regarding the causes of accidents/incidents.
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The protocol is implemented in two phases. Firstly, the most
important variables are pre-selected using different approaches.
In our case, all the approaches used produced similar results in
terms of ranking the most relevant variables. Secondly, relevant
information regarding accident/incident causes is extracted using
different prediction models. Decision rules, classification trees
and Bayesian networks constructed with the K2 algorithm best
explained accidents/incidents. Furthermore, the Bayesian/K2 net-
works had the added advantage of allowing what-if analyses,
thereby enabling data to be explored in greater depth and
different workplace accident/incident scenarios to be depicted.

The results of this research represent an important advance in
terms of managing information on workplace accidents. The
satisfactory results of the decision rules, classification trees and
Bayesian networks constructed with the K2 algorithm indicate
these to be reliable tools for studies of workplace accidents and
their causes. The quality of the results is such that we will be able
to plan and design a more ambitious, larger-scale study aimed at
gaining a deeper understanding of the causes of accidents in a
range of industrial sectors, but, in particular, in the mining
and construction sectors. The methodologies, moreover, are
sufficiently consistent to be used in periodic studies aimed at
comparing developments over time.
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